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A new numerical method is applied to the solution of electromagnetic wave diffra-
ction problems on perfectly conducting screens. The method is based on a special
class of Gaussian approximating functions that are used for discretization of the
original integral equation of the problem. These functions essentially simplify the
construction of the final matrix of the system of linear algebraic equations to which
the problem is reduced after the discretization. The method is developed for the
solution of 2D and 3D diffraction problems and the numerical results are compared
with exact and approximate solutions existent in the literature. The method may be
applied to the solution of a wide class of the problems of mathematical physics that
can be reduced to boundary pseudo-differential equations. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Numerical methods are widely used for the solution of electromagnetic wave diffraction
problems on perfectly conducting surfaces. Usually these problems are first reduced to the
solution of the integral equations for the surface current and some variants of the boundary
element method (BEM) [1, 2] are applied to the numerical solution of such equations.

For the use of the BEM, the scattering surface should be divided into a finite number of
subareas and the unknown functions (the components of the current) are approximated by
standard (as a rule polynomial) functions in every subarea. After applying the method of
moments or the collocation method, the problem is reduced to the solution of a finite system
of linear algebraic equations. The components of the matrix of this system are integrals over
the subareas (boundary elements) of the surface. In the problem of scattering on perfectly
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conducting surfaces, these integrals are singular and the complexity of their calculations
depends on the type of approximating functions. In a standard BEM, a great portion of
the computer time is spent in calculating these integrals. A nontrivial auxiliary problem is
dividing an arbitrary surface into a set of boundary elements.

In this study, a new numerical method is applied to the solution of the diffraction prob-
lem under consideration. In this method the actual distribution of the surface current is
approximated by Gaussian functions located on the planes tangent to the scattering surface
at some homogeneous set of surface nodes. The idea to use these functions for the solu-
tion of a wide class of integral equations of mathematical physics belongs to V. Maz’ya
[3, 4]. The theory of approximation by Gaussian functions was developed in the works of V.
Maz’ya [3, 4] and V. Maz’ya and G. Shmidt [5]; the multiresolution analysis based on such
functions was proposed in the work of V. Maz’ya and G. Shmidt [6]. These functions were
used for the solution of the integral equations of plane elasticity for areas with cracks in
[7–9].

The use of these functions for the solution of the integral equations of the diffraction
theory has two main advantages. First, the action of the integral operators of the problem
on these functions is a combination of few standard functions. The latter may be simply
tabulated, kept in the computer memory, and then used for the solution of any diffraction
problem. As a result, the time for the calculation of the matrix of the linear system obtained
after the discretization of the problem is essentially reduced in comparison with a standard
BEM. It is also important that only the coordinates of the surface nodes and the surface
orientations at the nodes are necessary for the surface description in the present method.
The method was called by V. Maz’ya the boundary point method (BPM) and in the latter the
boundary points (nodes) play the role of boundary elements of the conventional BEM. Note
that the problem of covering an arbitrary smooth surface by a homogeneous set of nodes
is simpler than the detailed description of the geometry of all the boundary elements that
is necessary for the application of any traditional BEM to the solution of surface integral
equations.

The structure of the article is as follows. In Section 2, the integral equation of the the-
ory of monochromatic electromagnetic wave diffraction on perfectly conducting screens is
considered. In Section 3, the BPM is developed for 2D diffraction problems. It is shown
that after discretization of the problem using Gaussian approximating functions, the compo-
nents of the matrix of the linear system are combinations of three standard one-dimensional
integrals that depend on three nondimensional parameters (two nondimensional distances
and a nondimensional frequency). For small values of the distances these integrals may
be simply tabulated and kept in the computer memory. Asymptotic expressions of these
integrals for large distances are obtained in the form of well-known special functions.
Examples of the numerical solutions of 2D diffraction problems for screens (a circular
infinite cylinder, a long plane strip, and a rough surface model) are presented in
Section 4.

In Section 5, the method is developed for the 3D case. The action of the integral operator of
the 3D diffraction problem on Gaussian approximating functions is obtained in this section.
As in the 2D case, the matrix of the linear system of the discretized problem depends
only on three one-dimensional integrals. The latter may be tabulated for small values of
nondimensional distances and have simple asymptotic expressions for large distances. In
Section 6, the numerical solutions of 3D diffraction problems for a perfectly conducting
spherical surface and for a plane circular disk are considered. The final conclusions and the
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discussion of the area of application of the method are presented in Section 7. A numerical
algorithm for generating a homogeneous set of nodes on an arbitrary smooth surface is
described in the Appendix.

2. THE INTEGRAL EQUATION OF THE PROBLEM OF ELECTROMAGNETIC WAVE

DIFFRACTION ON A PERFECTLY CONDUCTING SCREEN

Let a monochromatic electromagnetic wave of frequency ω propagate through a homo-
geneous and isotropic medium with dielectric and magnetic permittivities ε and µ. If the
dependence on time t is defined by the factor eiωt , the amplitudes of electric E(x) and
magnetic H(x) fields in the medium satisfy the well-known Maxwell equations

∇ × H(x) = i
ωε

c
D(x), ∇ · D(x) = 0,

(2.1)
∇ × E(x) = −i

ωµ

c
H(x), ∇ · H(x) = 0,

where the vectors of electric field E(x) and electric displacement D(x) are connected by
the equation

D(x) = εE(x).

Here x(x1, x2, x3) is a point of the medium with Cartesian coordinates xi , ∇ = ei
∂

∂xi
is

the vector gradient, ei (i = 1, 2, 3) are unit vectors of the axes xi ; summation in respect to
repeating indexes is implied. A dot (·) is the scalar product and (×) is the vector product
of vectors and tensors; c is the wave velocity. For simplicity we assume that ε = 1, µ = 1
(vacuum).

Let 
 be a smooth, perfectly conducting surface embedded in the medium. The electric
field E(x) in the medium with such a surface may be presented in the form [1]

E(x) = E0(x) − i
4πc

k0

∫



∇ × [∇ × g(x − x ′)J(x ′)] d
′. (2.2)

Here E0(x) is an incident field that is assumed to be a plane monochromatic wave

E0(x) = e exp(−ik0 · x), k0 = k0m, k0 = ω

c
, |m| = 1, (2.3)

where k0 is the wave vector and e is the polarization vector of this wave. Operator ∇ in
Eq. (2.2) acts with respect to point x .

The kernel of the integral operator in Eq. (2.2) is the second derivative of Green function
g(x) of Helmholtz’s operator

∇g(x) + k2
0 g(x) = −δ(x),  = ∇ · ∇. (2.4)

Here δ(x) is Dirac’s delta-function. In the 3D case, g(x) takes the form

g(x) = e−ik0r

4πr
, r = |x |, x = x(x1, x2, x3) (2.5)
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and in the 2D case, g(x) is

g(x) = − i

4
H (2)

0 (k0r), r = |x |, x = x(x1, x2), (2.6)

where H (2)
0 is zero-order Hankel function of the second kind.

The density J(x) of the potential in Eq. (2.2) is the surface current generated on 
 by
incident field E0(x). Vector J(x) belongs to 
 and thus the following equation holds:

n(x) · J(x) = 0, x ∈ 
. (2.7)

Here n(x) is a normal vector to the positive side of 
: for closed surfaces, n(x) is an
external normal; for unclosed surfaces, one of the sides of 
 should be chosen as the pos-
itive one.

The field E(x) in Eq. (2.2) satisfies Maxwell’s equations (2.1) for any current distribution
J(x) on 
 and the tangent components of this field are continuous on 
 [1]. The integral term
in Eq. (2.2) may be interpreted as the field scattered on 
. Because the tangent components
of total electric field E(x) should be equal to zero on perfectly conducting surfaces, the
boundary condition on 
 takes the form [1]

n(x) × E(x) = 0, x ∈ 
. (2.8)

The equation for the surface current follows from Eqs. (2.2) and (2.8) in the form

i
4πc

k0
n(x) ×

∫



∇ × [∇ × g(x − x ′)J(x ′)] d
′ = n(x) × E0(x), x ∈ 
. (2.9)

It should be emphasized that the diffraction problem for screens (unclosed surfaces)
cannot be reduced to equations of the second kind by using the classical theory of the
potential of a simple or double layer (see the discussion in [10]). The appropriate equation
of this problem takes the form of the integral equation (2.9) of the first kind and its kernel
is hypersingular. Note that Eq. (2.9) is valid also for closed surfaces but in the latter case
the problem may be reduced to the integral equation of the second kind that does not have
such a high singularity [1].

Taking into account the equivalence

∇ × [∇ × g(x − x ′)J(x ′)] = [∇ ⊗ ∇g(x − x ′)] · J(x ′) − g(x − x ′)J(x ′), (2.10)

where ⊗ is the tensor product, one can rewrite Eq. (2.2) in the form

E(x) = E0(x) + Es(x), Es(x) = −i
4πc

k0

∫



K(x − x ′) · J(x ′) d
′, (2.11)

K(x) = ∇ ⊗ ∇g(x) + k2
0 g(x)1. (2.12)

Here Eq. (2.4) for Green function g(x) is used; 1 is the second-rank unit tensor.
Let us introduce projector θ(x) on the plane tangent to 
 at point x

θ(x) = 1 − n(x) ⊗ n(x), x ∈ 
. (2.13)
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Because vector J(x) belongs to 
, the following equation holds

θ(x) · J(x) = J(x),

and this is another form of Eq. (2.7). Using projector θ(x), the boundary condition (2.8)
may be rewritten in the following equivalent form:

θ(x) · E(x) = 0, x ∈ 
. (2.14)

The equation for J(x) that follows from Eqs. (2.11) and (2.14) takes the form

i
4πc

k0

∫



U(x, x ′) · J(x ′) d
′ = θ(x) · E0(x), x ∈ 
;
(2.15)

U(x, x ′) = θ(x) · K(x − x ′) · θ(x ′).

This equation is totally equivalent to Eq. (2.9). The integral on the left-hand side of
Eq. (2.15) has a strong singularity

U(x, x ′) ∼ |x − x ′|−3 when x ′ → x ∈ 


and should be understood in terms of some regularization. It is possible to demonstrate that
for an unclosed surface 
 with the border � the regularization formula for this integral has
the form∫




U(x, x ′) · J(x ′) d
′ = v.p.

∫



U(x, x ′) · [J(x ′) − J(x)] d
′

+θ(x) ·
∮

�

∇g(x − x ′) ⊗ ν(x ′) d�′ ·J(x)+ k2
0

∫



g(x − x ′) d
′J(x), x ∈ 
, (2.16)

where the first integral in the right-hand side is understood as its Cauchy principal value
(v.p). Here ν(x) is the external normal to � at point x ∈ � (ν is situated in the plane tangent
to 
 at point x). For closed surfaces the integral over � disappears.

If 
 is an infinite plane x3 = 0 and J(x1, x2) is a function of S-space on 
, another
regularization formula of the operator in Eq. (2.15) may be proposed. (S-space consists
of infinitely smooth functions that tend to zero at infinity faster than any negative power
of |x̄ |, x̄ = x̄(x1, x2).) In this case the field Es(x) in Eq. (2.11) may be presented as a
convolution integral over 3D space and after using Fourier transforms of the integrand
functions we get

Es(x) = −i
4πc

k0

∫
K(x − x ′) · J(x̄ ′)δ(x ′ · e3) dx ′

= −i
c

2k0π2

∫
K̄(k) · J̄(k̄) exp(−ik · x) dk. (2.17)

Here δ(x · e3) is the delta-function concentrated in the plane (x1, x2), K̄(k) is 3D Fourier
transform of tensor K(x) in Eq. (2.12), and J̄(k̄) is 2D Fourier transform of function J(x̄),

k = k(k1, k2, k3) is a vector parameter of Fourier transform, k̄ = k̄(k1, k2),

K̄(k) =
∫

K(x) exp(ik · x) dk = 1

k2 − k2
0

(
k2

01 − k ⊗ k
)
, k = |k|. (2.18)
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After integration over coordinate k3 in Eq. (2.17) the scattered field Es(x) takes the form

Es(x̄, x3) = −i
c

2k0π

∫
K̂(k̄, x3) · J̄(k̄) exp(−i k̄ · x̄) dk̄, (2.19)

K̂(k̄, x3) · J̄(k̄) = I0(k̄, x3)
(
k2

01 − k̄ ⊗ k̄
) · J̄(k̄) + I1(k̄, x3)(k̄ · J̄(k̄))e3, (2.20)

I0(k̄, x3) = 1

β(k̄, k0)
exp[−|x3|β(k̄, k0)],

(2.21)
I1(k̄, x3) = isign(x3) exp[−|x3|β(k̄, k0)],

β(k̄, k0) =


(
k̄2 − k2

0

)1/2
, k̄ ≥ k0

i
(
k2

0 − k̄2
)1/2

, k̄ < k0.
(2.22)

Here k̄ = |k̄|, the sign of the square root in Eq. (2.22) for β(k̄, k0) is taken in order to
obtain outgoing scattered waves in Eq. (2.19) for Es(x̄, x3). Because J̄(k̄) is also a function
of S-space, the integral in Eq. (2.19) converges absolutely. Thus, in this case the left-hand
side of Eq. (2.15) may be presented in the form of the absolutely converging integral

i
4πc

k0

∫
U(x̄ − x̄ ′) · J(x̄ ′) dx̄ ′ = i

c

k0π

∫
U(k̄) · J̄(k̄) exp(−i k̄ · x̄) dk̄,

(2.23)

U(k̄) = θ · K̂(k̄, x3) · θ = 1

2β(k̄, k0)

(
k2

0θ − k̄ ⊗ k̄
)
.

It follows from this equation that the integral operator in Eq. (2.15) is a pseudo-differential
operator with the symbol U(k̄).

It was proved in [11, 12] that if k0 �= 0, a unique solution of Eq. (2.15) exists for every
smooth right-hand side and belongs to the Hölder space C1/2(
). If k0 = 0 (static field)
the homogeneous equation (2.15) has a class of nontrivial solutions that was described in
[9, 10]. For the numerical solution of Eq. (2.15) it is useful to take into account the asymptotic
behavior of J(x) near the border � of 
. Let ν(x0) be the normal to � and τ (x0) be the
tangent vector to � at point x0 ∈ � (vector ν(x0) belongs to the plane tangent to 
 at point
x0). Scalar products ν(x0) · J(x) and τ (x0) · J(x) have the asymptotics near � [12],

ν · J = O
(
r1/2
)
, τ · J = O

(
r−1/2

)
, (2.24)

where r = |x − x0| is the distance to � from point x ∈ 
 in the direction of ν(x0).

3. NUMERICAL SOLUTION OF 2D DIFFRACTION PROBLEMS

For the numerical solution of Eq. (2.15) the class of Gaussian approximating functions
proposed in [3–6] will be used. Let u(x) be a scalar function in d-dimensional space Rd .
If u(x) and its first derivative are bounded, u(x) may be approximated by the following
series:

u(x) ≈ uh(x) =
∑
m∈Zd

umϕ(x − mh), ϕ(x) = 1

(π D)d/2
exp

(
− |x |2

Dh2

)
. (3.1)

Here m ∈ Zd is a d-dimensional vector with integer components, hm are the coordinates
of the nodes of this approximation, h is the distance between the neighboring nodes, um =
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u(hm) is the value of the function u(x) at node x = hm, and D is a nondimensional
parameter. It is demonstrated in [3–5] that the following estimation holds:

|u(x) − uh(x)| ≤ ch‖∇u‖ + |u(x)|R(D), R(D) = O(exp(−π2 D)). (3.2)

Here ‖∇u‖ is the norm in the space of continuous functions, c = O(1). If h is sufficiently
small the error of the approximation (3.1) may be made negligible by the appropriate
choosing of the parameter D (D = O(1)). The properties of this approximation were studied
in detail in [3–5].

Let us consider an infinite perfectly conducting cylindrical surface that is parallel to the
axis x3, and � is the intersection of this surface with plane (x1, x2) (see Fig. 1). If the wave
vector k0 and the polarization vector e of the incident field E0(x) belong to the plane (x1, x2)
or if e is orthogonal to the latter, the diffraction problem is plane and its solution depends
only on two coordinates x1, x2. In the plane case, the electric field E(x) in the medium may
be presented in the form similar to Eq. (2.2),

E(x) = E0(x) + Es(x), Es(x) = −i
4πc

k0

∫
�

K(x − x ′) · J(x ′) d�′. (3.3)

Here x = x(x1, x2), K(x) has form (2.12), where ∇ is the 2D gradient and g(x) is the
2D Green function in Eq. (2.6). The equation for the surface current J(x) in the plane case
is similar to Eq. (2.15)

i
4πc

k0

∫
�

U(x, x ′) · J(x ′) d
′ = θ(x) · E0(x); x ∈ �, (3.4)

where the left-hand side should be understood in terms of the 2D analogy of regularization
(2.16).

Γ
i

s i
ni

e2

e1

n
j

s j

j

βj

βi

x

ri

rj

γi

FIG. 1. The global (e1, e2) and local (s(i), n(i)) bases in the intersection of a cylindrical surface.
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If we introduce the delta-function δ(�) concentrated on �, the field Es(x) in Eq. (3.3)
may be presented in the form

Es(x) = −i
4πc

k0

∫
K(x − x ′) · J(x ′)δ(�′) dx ′, (3.5)

where integration is spread over the 2D plane. For the numerical solution of Eq. (3.4)
let us choose a set of nodes x (i) on the contour � with the same distances h between the
neighboring nodes and change the potential (3.5) concentrated on � for the sum of potentials
concentrated on the tangent lines γi to � at points x(i) (see Fig. 1). Thus, the distribution
J(x)δ(�) in Eq. (3.5) is approximated by the sum

J(x)δ(�) ≈
∑

i

J(i)ϕi (x)δ(γi ), (3.6)

where δ(γi ) is delta-function concentrated on the tangent line γi and the function ϕi (x) has
the form

ϕi (x) = ϕi (x1, x2) = 1

(π D)1/2
exp

(
−
(
x1 − x (i)

1

)2 + (x2 − x (i)
2

)2

Dh2

)
. (3.7)

After substituting Eq. (3.6) into Eq. (3.5) we go to the following approximation of Es(x):

Es(x) = −i
4πc

k0

∫
K(x − x ′) · J(x ′)δ(�′) dx ′ ≈ −i4πc

∑
i

I(i)(x) · J(i), (3.8)

I(i)(x) = 1

k0

∫
K(x − x ′)ϕi (x ′)δ(γ ′

i ) dx ′. (3.9)

Let us consider the components I (i)
k j of the integral I(i) in the local coordinate system

(s, z) with the origin at the i-th node (see Fig. 1):

I (i)
k j (s, z) = 1

k0

∫ ∫ ∞

−∞
Kkj (s − s ′, z − z′)ϕ(s ′)δ(z′) ds ′,

(3.10)

ϕ(s) = 1

(π D)1/2
exp

(
− s2

Dh2

)
.

Here s is the coordinate along the tangent line γi and z is the coordinate along the
normal n(i) to � at the i-th node. In this local system vector n(i) has the components
n(i)

s = 0, n(i)
z = 1 and δ(γi ) = δ(z). Because I (i)

k j (s, z) is a convolution integral, Eq. (3.10)
may be rewritten in the form

I (i)
k j (s, z) = 1

(2π)2k0

∞∫
−∞

∫
K̃k j (k1, k2)ϕ̃(k1)e

−i(k1s+k2z) dk1 dk2. (3.11)

Here K̃k j (k1, k2) are the components of the tensor K̄(k) in Eq. (2.18) if k is changed
for k̄, ϕ̃(k1) = h exp(− Dh2k2

1
4 ). After integrating over k2 in Eq. (3.11) we go to an equation

similar to Eq. (2.19)

1

2π

∫ ∞

−∞
K̄(k1, k2) exp(−ik2z) dk2 = 1

2

(
k2

0

β(k1, k0)
1 − k2

1

β(k1, k0)
s(i) ⊗ s(i)

+ ik1sign(z)
(
s(i) ⊗ n(i) + n(i) ⊗ s(i)

)+ β(k1, k0)n(i) ⊗ n(i)

)
e−|k1||z|. (3.12)
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Here s(i), n(i) are the unit vectors of the axes s and z, respectively,

β(k1, k0) =
{(

k2
1 − k2

0

)1/2
, k1 ≥ k0

i
(
k2

0 − k2
1

)1/2
, k1 < k0.

(3.13)

After substituting Eq. (3.12) into Eq. (3.11) and integrating over k1 we obtain the com-
ponents of the tensor I(i)(s, z) in the local system of the i-th node. The scalar product
I(i)(s, z) · J(i) in Eq. (3.8) takes the form

I(i)(s, z) · J(i) = 2

κ0 D1/2
[J00(κ0, s, z)1 + J11(κ0, s, z)s(i) ⊗ s(i)

+ J12(κ0, s, z)n(i) ⊗ s(i)] · J(i),

where scalar functions J00(κ0, s, z), J11(κ0, s, z), J12(κ0, s, z) have the forms

J00(κ0, s, z) = f1(κ0, η, ζ) − f3(κ0, η, ζ), J11(κ0, s, z) = − f1(κ0, η, ζ), κ0 = k0h1,

(3.14)

J12(κ0, s, z) = sign(ζ ) f2(κ0, η, ζ ), η = s

h1
, ζ = z

h1
, h1 = D1/2

2
h.

Three functions fi (κ0, η, ζ ) of nondimensional variables in Eq. (3.14) have the forms of
the following one dimensional integrals:

f1(κ0, η, ζ ) = 1

2π

∫ ∞

0
cos(κη) exp[−κ2 − |ζ |β(κ, κ0)]

κ2dκ

β(κ, κ0)
,

f2(κ0, η, ζ ) = 1

2π

∫ ∞

0
sin(κη) exp[−κ2 − |ζ |β(κ, κ0)]κdκ, (3.15)

f3(κ0, η, ζ ) = 1

2π

∫ ∞

0
cos(κη) exp[−κ2 − |ζ |β(κ, κ0)]β(κ, κ0) dκ.

If ρ = (ζ 2 + η2)1/2 > 10 these integrals may be changed with sufficient accuracy for
their asymptotic expressions

f1(κ0, η, ζ ) ≈ − iκ0

4ρ

[
H (2)

1 (κ0ρ) − κ0η
2

ρ
H (2)

2 (κ0ρ)

]
exp

(
−κ2

0 η2

ρ2

)
,

f2(κ0, η, ζ ) ≈ − iκ2
0 |ζ |η
4ρ2

H (2)
2 (κ0ρ) exp

(
−κ2

0 η2

ρ2

)
, (3.16)

f3(κ0, η, ζ ) ≈ iκ0

4ρ

[
H (2)

1 (κ0ρ) − κ0ζ
2

ρ
H (2)

2 (κ0ρ)

]
exp

(
−κ2

0 η2

ρ2

)
,

where H (2)
1 , H (2)

2 are the Hankel functions of the second kind and of order 1 and 2.
The integrals in Eq. (3.15) converge absolutely and for ρ ≤ 10 they may be calculated

numerically, tabulated, and stored in the computer memory.
Let us introduce a global Cartesian coordinate system (x1, x2, x3) with the basis (e1, e2, e3)

and the local Cartesian systems (s, z, x3) with the bases (s(i), n(i), e(i)
3 ) at every contour node

x (i) (Fig. 1). In the local basis the vector J(i) in Eq. (3.6) takes the form

J(i) = J (i)
s s(i) + J (i)

3 e(i)
3 . (3.17)
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The connection between the global and local bases has the form

s(i) = cos(βi )e1 + sin(βi )e2, n(i) = −sin(βi )e1 + cos(βi )e2, e(i)
3 = e3

and the connections between the local bases at the i-th and j-th nodes are

s( j) = cos(γ j i )s(i) + sin(γ j i )n(i), n( j) = −sin(γ j i )s(i) + cos(γ j i )n(i), γ j i = β j − βi .

Here βi is the angle between unit vectors e2 and n(i) (Fig. 1).
Using the last equations and Eqs. (3.8) and (3.14) the scattered field Es(x) at arbitrary

point x(x1, x2) in the global basis may be presented in the form

Es(x1, x2) ≈ −i4πc
∑

i

I(i)(x1, x2) · J(i)

= −
∑

i

�11
(
r (i)

s , r (i)
n

)
J (i)

s s(i) + �12
(
r (i)

s , r ( j)
n

)
J (i)

s n(i) + �3
(
r (i)

s , r (i)
n

)
J (i)

3 e3

= −
∑

i

[
�11
(
r (i)

s , r (i)
n

)
cos βi − �12

(
r (i)

s , r ( j)
n

)
sin βi

]
J (i)

s e1

+ [�11
(
r (i)

s , r ( j)
n

)
sin βi + �12

(
r (i)

s , r (i)
n

)
cos βi

]
J (i)

s e2

+ �3
(
r (i)

s , r (i)
n

)
J (i)

3 e3, (3.18)

�11(rs, rn) = −i
8πc

D1/2
f3

(
κ0,

rs

h1
,

rn

h1

)
,

�12(rs, rn) = i
8πc

D1/2
sign(rn) f2

(
κ0,

rs

h1
,

rn

h1

)
, (3.19)

�3(rs, rn) = i
8πc

D1/2

[
f1

(
κ0,

rs

h1
,

rn

h1

)
− f3

(
κ0,

rs

h1
,

rn

h1

)]
.

Here r (i)
s and r (i)

n are the components of the vector r(i) of arbitrary point x(x1, x2) in the
local basis (s(i), n(i))

r(i) = r (i)
s s(i) + r (i)

n n(i), r (i)
s = (x1 − x (i)

1

)
cos(β1) + (x2 − x (i)

2

)
sin(βi ),

(3.20)
r (i)

n = −(x1 − x (i)
n

)
sin(βi ) + (x2 − x (i)

2

)
cos(βi ).

The tangential component of the field Es(x) on � is approximated by the equation

θ(x) · Es(x) = −i
4πc

k0

∫
�

θ(x) · K(x − x ′) · J(x ′) d�′

(3.21)
≈ −i4πc

∑
j

θ(x) · I( j)(x) · J( j), s ∈ Γ.

The value of this vector at the i-th node is presented in the form

θ
(
x (i)
) · Es

(
x (i)
) = E (i)

s s(i) + E (i)
3 e3, (3.22)

E (i)
s = −

∑
j

[
�11
(
r (i j)

s , r (i j)
n

)
cos(β j − βi ) − �21

(
r (i j)

s , r (i j)
n

)
sin(β j − βi )

]
J ( j)

s ,

(3.23)
E (i)

3 = −
∑

j

�3
(
r (i j)

s , r (i j)
n

)
J ( j)

3 .
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Here (r (i j)
s , r (i j)

n ) are the components of vector r(i j) that connects the i-th and j-th nodes,
in the local basis of the j-th node.

The system of linear algebraic equations for the components (J (i)
s , J (i)

3 ) of the vectors
J(i) follows from the boundary condition (2.14) that should be satisfied at all the nodes
(the collocation method). If polarization vector e of the incident field E0(x) belongs to
the plane (x1, x2) the vector J(i) in the local basis of the i-th node has only s-component
(J(i) = J (i)

s s(i)) and the system for J (i)
s takes the form

M∑
j=1

A(i j)
1 J ( j)

s = E0(i)
s . (3.24)

Here M is the total number of nodes; the components of matrix A1 are

A(i j)
1 = �11

(
r (i j)

s , r (i j)
n

)
cos(γ j i ) − �21

(
r (i j)

s , r (i j)
n

)
sin(γ j i ). (3.25)

E0(i)
s = E0

s (x (i)) is the s-component of the incident field in the i-th node.
If the polarization vector of the incident field is orthogonal to the plane (x1, x2) (E0(x) =

E0
3(x1, x2)e3) only the components J (i)

3 of the vectors J(i) are not equal to zero (J(i) = J (i)
3 e3)

and the system for J (i)
3 takes the form:

M∑
j=1

A(i j)
2 J ( j)

3 = E0(i)
3 , A(i j)

2 = �3
(
r (i j)

s , r (i j)
n

)
, E0(i)

3 = E0
3(x (i)). (3.26)

The components of matrixes A1 and A2 in Eqs. (3.24) and (3.26) are expressed
via the standard functions fi (i = 1, 2, 3) in Eqs. (3.15) and (3.16). After solution of
Eq. (3.24) or Eq. (3.26) the scattered field at arbitrary point x is to be calculated from
Eq. (3.18).

4. NUMERICAL RESULTS IN THE 2D CASE

1. Let an incident wave E(0)(x) with the wave vector k0 = −k0e1 and the polarization
vector e = e2 be scattered on a perfectly conducting circular cylindric surface of a unit
radius (a = 1) (see Fig. 2). An analytical solution of this problem may be constructed by
the method presented in [13].

In this case, only the local components Js of the current are not equal to zero and the system
for J (i)

s (the values of the current at the nodes x (i)) has the form of Eq. (3.24). The elements of
matrix A1 of this system are expressed via the standard functions fi (κ0, η, ζ ) in Eqs. (3.15)
and (3.16). For the interpolation of these functions in the region (η2 + ζ 2)1/2 < 10 one has
to calculate the integrals in Eq. (3.15) at the nodes of a square interpolating mesh that
covers the area (10 × 10) of variables (η, ζ ). For κ0 < 1 these functions are sufficiently
smooth and the step of the mesh may be taken about η ≈ ζ ≈ 0.2. For the interpolation
in respect to parameter κ0 the functions fi (κ0, η, ζ ) should be calculated with the step
κ0 ≈ 0.1 in the region κ0 < 1. Note that parameter κ0 = k0h1 should be less then 1 for a
sufficient accuracy of the incident field approximation. After constructing these functions,
the interpolating data may be kept in the computer memory and used for the solution of
any diffraction problem. For large distances ((η2 + ζ 2)1/2 > 10) asymptotic expressions
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n

s

x1

x2

e2

e1

k0ϕ

FIG. 2. The global (e1, e2) and local (s, n) bases in the intersection of a circular cylinder.

(3.16) for fi (κ0, η, ζ ) hold. In 2D case, D = 2 is an optimal value of parameter D in the
approximation (3.6), (3.7) (see [3–5]).

In the left-hand side of Fig. 3 exact distributions of the surface current moduli |J(ϕ)| (solid
lines) along � are compared with the numerical solutions for k0a = k0 = 1; 10. The nodes
are homogeneously distributed along the circle; lines with squares correspond to the number
of the nodes M = 20 (h = 0.314), lines with triangles to M = 40 (h = 0.157), and lines
with dots to M = 80 (h = 0.0785) for every k0a. The graphs of the angular distributions
of the intensity of the far scattered field I n(ϕ) are presented in the right-hand side of
Fig. 3:

I n(ϕ) = (r |Es(r, ϕ)|2)|r=100. (4.1)

For M = 80 the numerical solutions coincide practically with the exact current distribu-
tions. The LU-decomposition method was used for the solution of Eq. (3.24).

2. Let us consider scattering on a plane screen (long strip) (
 = {x1 = 0, −1 ≤ x2 ≤
1, −∞ < x3 < ∞}) when the wave vector k0 = −k0e1 of the incident field E(0)(x) is
orthogonal to the strip plane.

a) If the polarization e of E(0)(x) is directed along x2-axis (e = e2), the current in the
strip has only e2-component

J(x2) = J2(x2)e2. (4.2)

The distributions of the current moduli |J(x)|, (x = x2) in the strip and of the scattered
field intensity I n(ϕ) in the far zone (Eq. (4.1)) are presented in Fig. 4 for k0 = 1; 10
and for various numbers of the nodes in the screen. (Here k0 is in fact a nondimensional
wave number k0L and 2L = 2 is the width of the strip.) Lines with squares in Fig. 4
correspond to M = 20(h = 0.1), lines with triangles to M = 40(h = 0.05), lines with dots
to M = 60(h = 0.033), and solid lines to M = 80(h = 0.025). (ϕ is the angle between the
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FIG. 3. The distributions of the surface current moduli |J(x)| and the intensity I n(ϕ) of the far-scattered
field for a circular cylindrical surface of unit radius a = 1 for various numbers of surface nodes M , lines with �

correspond to M = 20, with � to M = 40 and with � to M = 80, solid lines correspond to the exact solutions,
k0 = k0a is nondimentional wave number.

vector of the observation point in the plane (x1, x2) and axis x2.) It is seen that the method
converges to a limit solution and the latter is practically achieved for M = 60.

b) Polarization along the axis of the strip: e = e3. For k0 = 1; 10 the convergence of
the method may be seen from Fig. 5. The lines with squares in these graphs correspond
to M = 20, lines with triangles to M = 40, lines with dots to M = 60, and solid lines to
M = 80. It is seen from Figs. 4 and 5 that the behavior of the current distributions near the
edge of the strip corresponds to the asymptotics of the exact solution given by Eq. (2.24).
Long-distance angular distributions of the scattered field intensity I n(ϕ) are presented in
the left-hand side of Fig. 5.

3. Scattering on a rough surface model:


 = {−10 < x1 < 10, x2 = A cos(πx1), −∞ < x3 < ∞}.
Let the incident field E0(x) have the form

E0(x) = e exp(−ik0 · x), k0 = k0

21/2
(e1 − e2), e = 1

21/2
(e1 + e2).

(The angle between the vectors k0 and e1 is −π/4.)
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FIG. 4. The distributions of the surface current moduli |J(x)| and the intensity I n(ϕ) of the fare scattered
field for an infinite strip, the incident field polarization is orthogonal to the axis of the strip. The lines with �

correspond to a number of surface nodes M = 20, with � to M = 40 and with � to M = 80.

In Fig. 6 the angle distributions of the scattered field intensity I n(ϕ) (Eq. (4.1)) in the far
zone for k0 = 1; 5 and various amplitudes A (“roughness”) are presented. In these graphs
the lines with triangles correspond to A = 0.1, lines with rhombs to A = 0.5, and lines with
dots to A = 1. The number of the nodes is M = 400 and for such M the limit solutions
are practically achieved. The distances h between neighboring nodes along the surfaces are
h = 0.052 for A = 0.1, h = 0.073 for A = 0.5, and h = 0.115 for A = 1.

The solid line on the graphs for k0 = 5 corresponds to the so-called Kirchhoff ap-
proximation for the case A = 0.1. In this approximation the current at every point of

 is assumed to be coincident with the current in the perfectly conducting plane tan-
gent to 
 at this point [14]. It follows from the physical meaning of this approximation
that the latter serves better, the smaller is amplitude A (roughness) and the shorter is the
wave length of the incident field (larger k0). Qualitatively the behavior of Kirchhoff’s ap-
proximation in Fig. 6 is similar to the numerical solution but the latter gives five times
higher values of the maximum of the scattered field intensity than Kirchoff’s approx-
imation predicts. For A = 0.5 and A = 1 (high roughness) Kirchhoff’s approximation
gives qualitatively wrong results and cannot be applied for estimating the scattered field
intensity.
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FIG. 5. The distributions of the surface current moduli |J(x)| and the intensity I n(ϕ) of the far-scattered field
for an infinite strip and various number of surface nodes M, the incident field polarization is parallel to the axis of
the strip. The lines with � correspond to M = 20, � to M = 40, � to M = 60, solid lines to M = 80.
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FIG. 6. The angular distributions of the intensity I n(ϕ) of the far-scattered field for a rough surface model
(x2 = A cos(πx1)) and various values of amplitude A. The lines with � correspond to A = 0.1, with � to A = 0.5
and with � to A = 1.
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5. 3D DIFFRACTION PROBLEMS

In the 3D case, integral equation (2.15) may be presented in the form

i
4πc

k0

∫
U(x, x ′) · J(x ′)
(x ′) dx ′ = θ(x) · E0(x), x ∈ 
, (5.1)

where 
(x) is delta-function concentrated on the surface 
 and integration in this equation
is spread over 3D space. Following [3–5], for the application of the BPM, the scattering
surface should be covered by a set of nodes x (i) (i = 1, 2, . . . , M) with approximately the
same distances between neighboring nodes. A numerical algorithm for constructing such
a set of nodes on an arbitrary smooth surface is presented in the Appendix. Let ωi be the
tangent plane to 
 at the i-th node. In the BPM the actual current distribution on 
 is
changed for the following sum:

J(x)
(x) ≈
∑

i

J(i)ϕi (x)ωi (x), ϕi (x) = 1

π D
exp

(
−|x − x (i)|

Dh2

)
. (5.2)

Here ωi (x) is delta-function concentrated in the plane ωi and J(i) is the vector of
this plane. The approximation of the scattered field Es(x) in Eq. (2.11) takes the
form

Es(x) = −i
4πc

k0

∫
K(x − x ′) · J(x ′)
(x ′) dx ′ ≈ −i4πc

∑
i

I(i)(x) · J(i), (5.3)

I(i)(x) = 1

k0

∫
K(x − x ′)ϕi (x ′)ωi (x ′) dx ′. (5.4)

Let us introduce a local Cartesian basis (e(i)
1 , e(i)

2 , e(i)
3 ) with the origin at the i-th node (the

unit vector e(i)
3 coincides with the normal n(i) to ωi at point x(i)). In this local coordinate

system integral I(i)(x) takes the form

I(i)(x) = 1

(2π)3k0

∫
K̄(k)ϕ0(k̄) exp(−ik · x) dk, ϕ0(k̄) = h2 exp

(
− Dh2k̄2

4

)
.

Here K̄(k) has form (2.18), k(k1, k2, k3) is a vector parameter of the 3D Fourier transform,
and k̄2 = k2

1 + k2
2. After calculating the integral in this equation by the same way as in

Eqs. (2.19) and (3.14), the scalar product I(i)(x) · J(i) in Eq. (5.3) in the local basis of the
i-th node takes the form

I(i)(x) · J(i) = 4

Dκ0
[F1(κ0, η, ζ )1 + 2F2(κ0, η, ζ )µ ⊗ µ

+ 2sign(ζ )F3(κ0, η, ζ )n ⊗ µ] · J(i), n = e(i)
3 , κ0 = k0h1, (5.5)

η = 1

h1

(
x2

1 + x2
2

)1/2
, ζ = x3

h1
, µ = x1e(i)

1 + x2e(i)
2

h1η
, h1 = D̄1/2

2
h.
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Here the three functions Fi (κ0, η, ζ ) are the one-dimensional integrals

F1(κ0, η, ζ ) = 1

8π

∫ ∞

0

[(
2κ2

0 − κ2
)

J0(κη) − κ2 J2(κη)
]

× exp
[−k2 − |ζ |β(κ, κ0)

] κ dκ

β(κ, κ0)
,

(5.6)

F2(κ0, η, ζ ) = 1

8π

∫ ∞

0
J2(κη) exp

[−k2 − |ζ |β(κ, κ0)
] κ3 dκ

β(κ, κ0)
,

F3(κ0, η, ζ ) = 1

8π

∫ ∞

0
J1(κη) exp

[−k2 − |ζ |β(κ, κ0)
]
κ2 dκ,

where β(κ, κ0) is defined in Eq. (2.22), and Jn(z) is the Bessel function of order n.
For small values of the arguments η, ζ(ρ = (η2 + ζ 2)1/2 ≤ 10) these integrals may be

simply tabulated and kept in the computer memory. For ρ > 10 the following asymptotic
expressions for these integrals hold:

F1(κ0, η, ζ ) ≈ 1

4πρ3

(−1 + κ2
0 ρ2 − 3iκ0ρ

)
exp

(
−κ2

0 η2

ρ2
− iκ0ρ

)
,

F2(κ0, η, ζ ) ≈ η2

8πρ2

(
−κ2

0 + 3iκ0

ρ
+ 3

ρ2

)
exp

(
−κ2

0 η2

ρ2
− iκ0ρ

)
, (5.7)

F3(κ0, η, ζ ) ≈ η2|ζ |
8πρ2

(
−κ2

0 + 3iκ0

ρ
+ 3

ρ2

)
exp

(
−κ2

0 η2

ρ2
− iκ0ρ

)
.

As a result, Eq. (5.3) for Es(x) takes the form

Es(x) ≈ −i4πc
∑

j

I( j)(x) · J( j) = −
∑

j

3∑
l=1

(
�l1
(
r( j)
)

J ( j)
1 + �l2

(
r( j)
)

J ( j)
2

)
e( j)

l , (5.8)

�11
(
r( j)
) = i

16πc

D

[
F1

(
κ0,

ρ( j)

h1
,

z( j)

h1

)
+ 2

(
r ( j)

1

ρ( j)

)2

F2

(
κ0,

ρ( j)

h1
,

z( j)

h1

)]
,

�12
(
r( j)
) = �21

(
r( j)
) = i

32πc

D

r ( j)
1 r ( j)

2(
ρ( j)
)2 F2

(
κ0,

ρ( j)

h1
,

z( j)

h1

)
,

�22
(
r( j)
) = i

16πc

D

[
F1

(
κ0,

ρ( j)

h1
,

z( j)

h1

)
+ 2

(
r ( j)

2

ρ( j)

)2

F2

(
κ0,

ρ( j)

h1
,

z( j)

h1

)]
, (5.9)

�31
(
r( j)
) = i

32πc

D

r ( j)
1

ρ( j)
sign(z( j))F3

(
κ0,

ρ( j)

h1
,

z( j)

h1

)
,

�32
(
r( j)
) = i

32πc

D

r ( j)
2

ρ( j)
sign

(
z( j)
)

F3

(
κ0,

ρ( j)

h1
,

z( j)

h1

)
.

r( j) = x − x( j) = r ( j)
1 e( j)

1 + r ( j)
2 e( j)

1 + z( j)e( j)
1 , ρ( j) =

[(
r ( j)

1

)2 + (r ( j)
2

)]1/2
.

Let us introduce a global Cartesian coordinate system (x0
1 , x0

2 , x0
3 ) with the basis (e(0)

1 , e(0)
2 ,

e(0)
3 ) and a global spherical coordinate system (θ, ϕ, r ) with the same origins. The polar axis

of the spherical system is directed along vector e(0)
3 and ϕ is the angle between the vector e(0)

1
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and the projection of the vector x on the plane (x0
1 , x0

2 ). Let us move vector n( j) normal to the
surface 
 at the j-th node into the origin of the global spherical system using parallel transfer
and let the spherical coordinates of the moved vector be (θ j , ϕ j , 1). Local Cartesian basis
(e( j)

1 , e( j)
2 , e( j)

3 ) at the j-th node is constructed by parallel transferring the basis (eθ , eϕ, eτ )
of the global spherical system at point (θ j , ϕ j , 1) to the j-th node x ( j)

e( j)
1 = eθ (θ j , ϕ j , 1), e( j)

2 = eϕ(θ j , ϕ j , 1), e( j)
3 = er (θ j , ϕ j , 1) = n( j).

In this case the basis vectors of the local and global Cartesian systems are connected by
the equations

e j
l =

3∑
k=1

Q( j)
lk e(0)

k , e(0)
l =

3∑
k=1

Q̄( j)
lk e( j)

k ; (5.10)

where Q( j)
lk and Q̄( j)

lk are the components of the matrix Q( j) and of the matrix Q̄( j) transposed
in respect to Q( j), respectively. The matrix Q( j) has the form

Q( j) =
∥∥∥∥∥∥

cos θ j cos ϕ j , cos θ j sin ϕ j , −sin θ j

−sin ϕ j , cos ϕ j , 0
sin θ j cos ϕ j , sin θ j sin ϕ j cos θ j

∥∥∥∥∥∥ . (5.11)

As it follows from Eqs. (5.8)–(5.11) in the global Cartesian system, the scattered field
Es(x) takes the form

Es(x) ≈ −
∑

j

3∑
l=1

3∑
k=1

(
�l1
(
r( j)
)

Q( j)
lk J ( j)

1 + �l2
(
r( j)
)

Q( j)
lk J ( j)

2

)
e(0)

k . (5.12)

The value of this field in the i-th node is presented in the form

Es
(
x (i)
) = ≈ −

∑
j

3∑
l=1

3∑
k=1

(
�l1
(
r(i j)
)
T (i j)

lk J ( j)
1 + �l2

(
r(i j)
)
T (i j)

lk J ( j)
2

)
e(i)

k ,

(5.13)

r(i j) = x(i) − x( j), T (i j)
lk =

3∑
s=1

Q( j)
ls Q̄(i)

sk .

The system for the components J ( j)
1 , J ( j)

2 of the current follows from the boundary
conditions (2.14) in the form

Mn∑
j=1

(
Ai j

11 J ( j)
1 + Ai j

12 J ( j)
2

) = E0
1

(
x (i)
)
,

Mn∑
j=1

(
Ai j

21 J ( j)
1 + Ai j

22 J ( j)
2

) = E0
2

(
x (i)
)
. (5.14)

Here E0
1,2(x (i)) are the tangent components of the incident field E0(x) in the local basis

of the i-th node,

A(i j)
mn =

3∑
i=1

3∑
k=1

�lm
(
r(i j)
)
T (i j)

ln , m, n = 1, 2. (5.15)
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After solution of this system, the scattered field E(s) is to be constructed from Eq. (5.12).
If M is the total number of the nodes, the linear system (5.14) may be rewritten in the

canonical form

B X = F, (5.16)

where the components of the square matrix B of dimensions (2M × 2M) are

Bi j = Ai j
11, i ≤ M, j ≤ M; Bi j = Ai( j−M)

12 , i ≤ M, j ≤ M;
(5.17)

Bi j = A(i−M) j
21 , i > M, j ≤ M; Bi j = A(i−M)( j−M)

22 , i > M, j > M,

and the components of vectors X and F are

Xi = J (i)
1 , i ≤ M; Xi = J (i−M)

2 , i > M; (5.18)

Fi = E0
1(x (i)), i ≤ M; Fi = E0

2

(
x (i−M)

)
, i > M;

B in Eq. (5.16) is a dense matrix with maximal terms concentrated near the main diagonal.
For a homogeneous distribution of the nodes on 
 matrix B is symmetric with the same
elements in the main diagonal.

6. NUMERICAL RESULTS IN THE 3D CASE

1. Let us consider a spherical surface 
 of unit radius (a = 1). In this case the local
basis (e( j)

1 , e( j)
2 , e( j)

3 ) of the j-th node on 
 coincides with the basis (eθ , eϕ, eτ ) of the
global spherical system at this node. Let k0 = k0e(0)

3 and e = e(0)
1 be the wave vector and

polarization vector of the incident field E0(x), respectively. An analytical solution of this
problem may be constructed by the method presented in [13].

For the application of the BPM, a homogeneous set of nodes on 
 was generated by the
algorithm described in the Appendix. In Fig. 7 the dependences of relative error  of the
numerical solutions on the number of surface nodes M are presented for K0a = 1; 5; 8,

 =
∫



(|J∗| − |J|)2 d
∫



|J|2 d


. (6.1)

Here J∗ is a numerical solution of Eq. (5.1), and J is an exact current distribution. In Fig. 8
the distributions of the scattered field intensity I n(θ, ϕ) = |rEs(r, θ, ϕ)|2r=100 in the far zone
are given for ϕ = 0, 0 ≤ θ ≤ π and k0a = 1; 8. Solid lines in Fig. 8 correspond to exact
solutions, lines with triangles are numerical solutions for M = 328(h ≈ 0.2), lines with
rhombs correspond to M = 508(h ≈ 0.16), and lines with dots to M = 1148(h ≈ 0.1). In
these calculations parameter D in approximation (5.2) was taken D = 1.5.

2. Let us consider the diffraction problem for a thin disk of unit radius (
 = {(x2
1 +

x2
2)

1/2 ≤ 1, x3 = 0}). The wave vector of the incident field is orthogonal to the disk surface
(k0 = k0e3) and the polarization vector coincides with e1.

For plane screens the final equations of the method are essentially simplified. The com-
ponents of the matrixes Amn in Eq. (5.15) take forms

A(i j)
mn = �mn

(
r(i j)
)
, m, n = 1, 2, (6.2)
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FIG. 7. The dependence of the relative integral error � of the numerical calculation of surface current J(x)

in a spherical surface of unit radius a = 1 on the number M of surface nodes, the line with triangles corresponds
to the relative wave number of the incident field k0a = 1, with dots to k0a = 5 and with rhombs to k0a = 8.

where the functions �mn(r) are defined in Eq. (5.9). These functions are expressed via only
two functions F1, F2 in Eq. (5.6) and the latter are in fact the functions of two variables κ0

and η(ζ = 0 on 
).

In Fig. 9 the distributions of the current moduli |J(x1, x2)| along the disk diameters
(|J(x1, 0)| in the left-hand side and |J(0, x2)| in the right-hand side of Fig. 9) are presented
for k0a = 1; 10. Lines with squares correspond to M = 81 (h = 0.2), lines with triangles
to M = 317(h = 0.1), lines with dots to M = 797 (h = 0.0625), and solid lines to M =
1253 (h = 0.05).
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FIG. 8. The angle distribution of the intensity I n(θ) of the far-scattered field for a spherical surface of unit
radius a = 1 with various numbers M of surface nodes, for the wave numbers of incident field k0a = 1; 5. Lines
with triangles correspond to M = 328 (h ≈ 0.2), lines with rhombs to M = 508 (h ≈ 0.16), lines with dots to
M = 1148 (h ≈ 0.1), solid lines are exact solutions.
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FIG. 9. The distribution of the surface current moduli |J(x1, x2)| in a circular disk of unit radius a = 1 along
its diameter in the direction of axes x1, x2 for k0a = 1; 10. Lines with squares correspond to a number of surface
nodes M = 81 (h = 0.2), with triangles to M = 317 (h = 0.1), with dots to M = 797 (h = 0.0625) and solid
lines to M = 1253 (h = 0.05).

The angular distributions of scattered field intensity I n(θ) = |rEs(r, θ, 0)|2r=100 in the
far zone are presented in Fig. 10.

The solutions of system (5.16) for 3D problems were obtained by the conjugate gradient
method [13] with the regularization parameter α = 0.01. The number of iterations was
taken in order to satisfy the original equation with the precision ∼1%:

2M∑
i=1

∣∣∣∣∣
2M∑
j=1

Bi j X j − Fi

∣∣∣∣∣ < 0.01
2M∑
i=1

|Fi |.

Note that the method used in this and in the previous sections for the discretization
of the 2D and 3D diffraction problems is in essence the collocation method on the basis
of the Gaussian approximating functions. It is known that the properties of the systems of
linear algebraic equations obtained by the discretization procedure based on the method
of moments (MOM) are usually better then the properties of the systems obtained by the
collocation method [2]. In some cases the MOM may be also realized on the basis of the
Gaussian approximating functions. Let us consider the problem of diffraction on an arbitrary
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FIG. 10. The angular distribution of the intensity I n(ϕ) of the far-scattered field for a circular disk for
various number of surface nodes and k0a = 1; 10. Lines with squares correspond to a number of surface nodes
M = 81 (h = 0.2), with triangles to M = 317 (h = 0.1), with dots to M = 797 (h = 0.0625) and solid lines to
M = 1253 (h = 0.05).

plane area 
. In this case the integral equation for the surface current takes the form similar
to Eq. (5.1)

i
4πc

k0

∫



U(x − x ′) · J(x ′) dx ′ = θ · E0(x), x = x(x1, x2), (6.3)

where x1, x2 are the Cartesian coordinates in 
. Fourier transform Ū(k) of the kernel U(x)

of this equation is given in Eq. (2.23):

Ū(k) = 1

2β(k, k0)

(
k2

01 − k ⊗ k
)
, k = k(k1, k2). (6.4)

Let us find the solution of Eq. (6.3) in the form

J(x) =
M∑

j=1

J( j)ϕ j (x), ϕ j (x) = 1

Dπ
exp

(
−|x − x j |2

Dh

)
, (6.5)

where x j is a set of nodes in the area 
 with distances h between neighbor nodes. The
system for unknown coefficients J( j) in expansion (6.5) may be obtained by multiplication
of both parts of Eq. (6.3) with function ϕ j (x)( j = 1, 2, . . . , M) and integration over all the
plane (x1, x2) (the procedure of the MOM). As a result we go to the following system of
linear algebraic equations for vectors J( j):

M∑
j=1

A(i j) · J( j) = F(i), i = 1, 2 . . . , M (6.6)

A(i j) = i
4πc

k0

∫ ∫
ϕi (x)U(x − x ′)ϕ j (x ′) dxdx ′

= i
c

k0π

∫
Ū(k)ϕ2

0(k) exp[−ik · (xi − x j )] dk,

ϕ0(k) = h2 exp

(
− Dh2k2

4

)
. (6.7)
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After calculating this integral we obtain the equations for the components of tensors A(i j)

in the forms

A(i j)
11 = i

8π

D

[
F1

(
κ0,

ρ(i j)

h2
, 0

)
+ 2

(
r (i j)

1

ρ(i j)

)2

F2

(
κ0,

ρ(i j)

h2
, 0

)]
,

A(i j)
12 = i

16π

D

r (i j)
1 r (i j)

2

(ρ(i j))2
F2

(
κ0,

ρ(i j)

h2
, 0

)
, A(i j)

21 = A(i j)
12 ,

(6.8)

A(i j)
11 = i

8π

D

[
F1

(
κ0,

ρ(i j)

h2
, 0

)
+ 2

(
r (i j)

2

ρ(i j)

)2

F2

(
κ0,

ρ(i j)

h2
, 0

)]
,

κ0 = k0h2, h2 = h

(
D

2

)1/2

, r(i j)
(
r (i j)

1 , r (i j)
2

) = x(i) − x( j), ρ(i j) = |r(i j)|.

Here F1, F2 are the functions defined in Eqs. (5.6) and (5.7). The-right-hand side of Eq. (6.6)
takes the form

F(i) =
∫

θ · E0(x)ϕi (x) dx = h2

2Dπ

M∑
j=1

θ · E0(x j ) exp

(
− |xi − x j |2

2Dh2

)
, (6.9)

where the incident field E0(x) is approximated by an equation similar to Eqs. (3.1) and
(6.5)

E0(x) = 1

Dπ

M∑
j=1

E0(x j ) exp

(
−|xi − x j |2

Dh2

)
. (6.10)

Thus, the usage of the Gaussian approximating functions in the framework of the method
of moments has the same merit as its usage in the collocation method: it saves the time of
calculation of the elements of the matrix of the discretized system. The functions F1, F2

in Eqs. (6.8) for the elements of this matrix have the forms of standard integrals (5.6)
and (5.7), and the latter may be previously tabulated and kept in the computer memory.
The numerical solutions obtained by the MOM practically coincide with the results of the
collocation method except around a small vicinity of the edge of the plane area 
. Note
that the relative error of the both methods is maximum in this region. In order to improve
the numerical results in the region of the edges the asymptotic behavior of the solution
(2.24) should be taken into account and the numerical algorithm needs modifications. For
the calculation of the elastic fields near crack edges, such a modification is discussed in
[7–9]. The same scheme may be used for improving the solution of electromagnetic wave
diffraction problems in the vicinities of the edges of scattering surfaces.

7. CONCLUSION

The use of Gaussian approximating functions proposed in [3, 4] for the solution of the
electromagnetic wave diffraction problems on perfectly conducting screens has two main
advantages: the simplicity of preparation, of the initial data (the coordinates of surface nodes
and surface orientations at the nodes), and a short time for the construction of the matrix of
the linear system obtained after the discretization of the problem. The collocation method
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or the method of moments may be used for such a discretization. It is assumed that the basic
functions of the method ( fi (κ0, ζ, η) in the 2D case and Fi (κ0, ζ, η) in the 3D case) are
previously tabulated and kept in the computer memory.

The accuracy of the method depends on the density of surface nodes. The distances
between neighboring nodes should be about 0.05Rc in order to have an acceptable accurate
solution (∼1%). Here, Rc is a minimal characteristic size of the surface (e.g., a curvature
radius, a linear size of the surface, etc.) or a characteristic scale of the incident field. The
influence of parameter D in the approximations (3.6), (5.2) on the accuracy of the solution
is not essential if 1 < D < 2. Outside of this region, the convergence of the method with
respect to h gets worse. Note that for the calculation of the scattered field in the far zone it
is better to choose the smallest values of D(D ≈ 1). The convergence with respect to h is
faster in this case.

There is a specific difficulty in the application of numerical methods to the solution of
the diffraction problems for perfectly conducting screens. In some cases, depending on
the shape of the screen and frequency of the incident field, the linear system obtained
after discretization of the problem may be ill-posed. For instance, such an ill-posed system
may appear for low frequencies (quasistatics) because the original homogeneous integral
Eq. (2.15) has nontrivial solutions in the static case (see [11, 12]). Nontrivial solutions of
the homogeneous equation (2.15) may exist also for some discrete values of frequencies
(see [1], Chapter 6, for details). The application of the LU-decomposition algorithm to the
solution of these ill-posed systems gives highly oscillating distributions of the surface current
and these oscillations do not disappear when the number of surface nodes increases. These
ill-posed problems may be successfully solved using the regularization algorithms described
in [15, 16]. But the estimation of the so-called regularization parameter that appears in these
algorithms demands additional computational work. It is worth noting that the far scattered
fields are not sensitive to the value of the regularization parameter. “Regularized” and
“nonregularized” (oscillating) numerical solutions for the current usually give very close
results for the intensity of the far scattered field distributions.

The method developed in this study for the solution of the electromagnetic wave diffrac-
tion problems may be applied to a wide class of the problems of mathematical physics
that are reduced to surface pseudo-differential equations. In particular, the problems of
electrostatics, static elasticity, and elasto-plasticity, the problems of elastic wave diffraction
on inclusions and cracks, etc., may be successfully solved with the help of the developed
version of BPM.

APPENDIX

Let us consider a rectangular area S = {0 ≤ x1 ≤ a, 0 ≤ x2 ≤ b} in the plane (x1, x2),
where a smooth unique value function f (x1, x2) is defined. In order to cover surface 
 =
{x3 = f (x1, x2)} by homogeneous set Mh of nodes with distance h between neighboring
nodes, let us introduce a fine regular square mesh on S. Step h0 of the fine mesh should be
much less than h(h0 � h) and h0 defines the accuracy of the node coordinate definition in
the set Mh . Let

z(i)
1 = h0(i − 1), z(i)

2 = h0( j − 1), (i, j, = 1, 2, . . .) (A.1)

be the coordinates of the fine mesh.
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Let us choose an arbitrary point x (1)(x (1)
1 , x (1)

2 ) inside S as an initial node of set Mh and
introduce the function

P(r) =
[(

r
h

)n − 1
]2

α + ( r
h

)2n , 0 < α � 1; n � 1, (A.2)

where α is a small parameter and n is a large parameter. This function has a unique minimum
(P = 0) at point r = h and it tends to 1 when r → ∞ with a speed that depends on n. In
the calculations, n = 10 and α = 0.1 were taken.

Point x (2) with coordinates (x (2)
1 , x (2)

2 ) is spaced at distance h from x (1), if x (2) provides
minimum to the function P(r (1)(y1, y2))

min
(y1,y2)⊂S

P
(
r (1)(y1, y2)

) = P
(
r (1)
(
x (2)

1 , x (2)
2

))
,

(A.3)
r (1)(y1, y2) = [(y1 − x (1)

1

)2 + (y1 − x (1)
1

)2 + ( f (y1, y2) − f
(
x (1)

1 , x (1)
2

))2]1/2
.

In order to find the coordinates of this minimum let us construct matrix P (1) with the
components

P (1)
i j = P

(
r (1)
(
z(i)

1 , z( j)
2

))
(A.4)

that are the values of P(r (1)(y1, y2)) at the nodes of the fine mesh in Eq. (A.1). If the
minimal element of this matrix has indexes i2, j2, the node x (2) is placed at the point with
coordinates (z(i2)

1 , z( j2)
2 ) according to Eq. (A.1).

In order to obtain the coordinates of the nodes x (3), x (4), . . . , let us introduce the function

W (k, y1, y2) = 1

k

k∑
i=1

P
(
r (i)(y1, y2)

)
,

(A.5)
r (i)(y1, y2) = [(

y1 − x (i)
1

)2 + (y1 − x (i)
1

)2 + ( f (y1, y2) − f
(
x (i)

1 , x (i)
2

))2]1/2
.

For the calculation of the coordinates of the node x (3) let us take k = 2 in this formula.
Minimum of W (2, y1, y2) is achieved at point x (3) that is at the same distance h from points
x (1) and x (2). Let us calculate the elements of the matrix P (2)

P (2)
i j = W

(
2, z(i)

1 , z( j)
2

)
(A.6)

at the nodes of the fine mesh. The minimal element if this matrix with indexes i3, j3 gives
us coordinates (z(i3)

1 , z( j3)
2 ) of the point x (3) according to Eq. (A.1).

In the same way the coordinates of the node x (i) provide minimum to the function
W (i − 1, y1, y2) and this minimum should be found at the nodes of the fine mesh. The
process is stopped if the minimal value of W (i − 1, y1, y2) becomes more than 1. It means
that all the surface 
 is completely covered by the nodes and any additional node has a
neighboring node at the distance that is less than h.

The number of terms in Eq. (A.5) grows together with the number of nodes. Therefore,
the rate of the calculating process decreases when the number of the constructed node
coordinates grows. In order to avoid lengthy calculations, the area S should be divided
into several bands (subareas) Si (S = ∪Si ) (e.g., Si = {ai < x1 < bi , 0 < x2 < b}) and the
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generation of the nodes may be produced in every band independently. In this case only
the nodes in the nearest band with respect to the band where nodes are being constructed
should be taken into account in the sum (A.5).
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